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A Biomimetic Collision Detection Visual
Neural Model Coordinating
Self-and-Lateral Inhibitions

Jiajun Huang, Ziyan Qin, Mengying Wang, Renyuan Liu, and Qinbing Fu®)

Machine Life and Intelligence Research Centre, School of Mathematics and
Information Science, Guangzhou University, Guangzhou, China
qifu@gzhu.edu.cn

Abstract. Lobula Giant Movement Detectors (LGMD1 and LGMD2),
neurons located in the locust’s optic lobe, are specialized in detecting
approaching objects (looming perception) and have been widely modeled
for integration into mobile robots. In bio-inspired robotic implementa-
tions of LGMD, inhibitory processes are crucial, as they help maintain
selective responses to looming stimuli, enabling reliable collision avoid-
ance. However, current robotic implementations of LGMD models often
struggle with nearby translating movements, frequently generating false-
positive collision alerts. Recent biological studies have identified trans-
medulla afferent (TmA ) neurons within the LGMD dendritic region, which
may act as a form of self-inhibition (SI). These neurons rapidly suppress
intermediate neuronal activities in situ within the LGMD structure, effec-
tively complementing lateral inhibition (LI). Together, ST and LI enhance
the specificity of looming responses, reducing interference from translat-
ing motions. Despite their biological significance, these mechanisms have
yet to be effectively modeled and tested within artificial robotic vision
systems. In response, this study introduces a biomimetic visual neural
model that incorporates SI and coordinates it with LI during looming per-
ception. The proposed neural computation explicitly activates SI during
initial looming events and during translating movements by leveraging
spatial correlations within segmented, localized image areas, defined as
the local visual field (LVF). This innovative model has been integrated
into a bio-inspired micro-robot, named Colias, serving as its sole colli-
sion detection mechanism. Both offline evaluations and real-world robotic
tests demonstrate the efficacy of the biomimetic model in distinguishing
looming from translating motions. Consequently, the robot exhibits sig-
nificantly enhanced collision detection selectivity, closely resembling the
capabilities observed in biological organisms.

Keywords: Biomimetic visual model - LGMD - Self-inhibition -
Lateral inhibition - Collision detection

1 Introduction

Robust collision detection is essential for safe and efficient navigation in
autonomous mobile systems. Biologically inspired visual systems often provide
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elegant and efficient solutions to collision detection challenges encountered by
intelligent robots. Despite their relatively small brains and limited computational
resources, insects possess impressive neural capabilities for detecting and respond-
ing to collisions during flight. Locusts, for instance, can navigate vast distances
without collisions, even under challenging low-light conditions [1,2]. Central to this
capability are two specialized neurons located in the locust visual system, known as
Lobula Giant Movement Detectors (LGMD1 and LGMD2). These neurons exhibit
strong sensitivity to objects rapidly approaching on a collision course, while effec-
tively ignoring irrelevant motions, such as lateral translations [3-6]. Thus, the
biological principles underlying LGMD neurons and their neural circuitry offer a
promising foundation for developing bio-inspired collision detection technologies
in robotics.

Inhibitory neural processes are central in shaping the selectivity of loom-
sensitive neurons by interacting spatially and temporally with excitatory signals
[7-10]. In computational models of these systems, two primary inhibitory mecha-
nisms are commonly simulated. The first, lateral inhibition (LI), enhances spatial
resolution and contrast, sharpens the perception of looming object boundaries,
and suppresses excessive responses from neighboring neurons [3,9-12]. The sec-
ond mechanism, feed-forward inhibition (FFI), reduces neuronal activity when
an excessive number of pre-synaptic neurons activate simultaneously, thereby
stabilizing the LGMD neuron and preventing over-stimulation [3,9-11]. These
inhibitory processes have been effectively incorporated into neural network mod-
els capable of processing visual inputs, whether derived from offline recordings
or online sensory streams from robot vision systems [13,14].

However, current bio-inspired robotic implementations of LGMD models
struggle to effectively suppress responses to nearby translating motions, particu-
larly in complex and dynamic visual environments, often resulting in false alarms,
as mentioned in a recent review [14]. Recent biological research has uncovered
trans-medulla afferent (TmA) neurons within the LGMD’s presynaptic neuropil,
functioning likely as a distinct form of inhibition known as self-inhibition (SI) [6].
Unlike other inhibitory mechanisms, SI has been studied explicitly concerning its
causal role in shaping neuronal responses. Early investigations into locust visual
processing revealed that SI modulates neuronal activity by responding to a neu-
ron’s own excitation, thus enhancing sensitivity to sudden changes or transient
visual signals while suppressing background interference [15]. Further research
by Rind et al. demonstrated that SI exerts its strongest effects during the ini-
tial phase of an object’s approach and when the translating object’s image size
remains relatively small [6]. Conversely, LI emerges more gradually, becoming
prominent when the image expands significantly near the end of an approaching
event [6]. The coordinated interaction between SI and LI thus sharpens neuronal
selectivity for looming rather than translating stimuli, highlighting a promising
pathway for advancing biomimetic, LGMD-based robotic vision systems.

This study, for the first time, integrated SI and coordinates it with LI in
computational models of looming perception. We evaluated the effectiveness of
this combined inhibitory mechanism within two neural network models inspired

by LGMD1 and LGMD2 neurons [9,10]. Specifically, SI is implemented by ana-
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lyzing spatial correlations within segmented local visual fields (LVF), each cor-
responding to a specific region of the visual input. The SI mechanism rapidly
reduces local excitation when the LVF activation remains below a predefined
threshold, operating earlier than LI. Conversely, during genuine looming events,
the LVF becomes strongly activated, diminishing SI’s influence and allowing LI
to dominate the inhibitory interaction, sharpening the neuron’s looming-specific
respounse.

To assess the effectiveness and efficiency of the proposed SI mechanism, we
conducted both offline evaluations and online robot experiments, comparing
our model to original LGMD1 and LGMD2 implementations. The experimen-
tal results underscored the efficacy of incorporating and coordinating SI with
LI in computational models of looming-sensitive neurons. Although biological
studies on SI remain relatively limited, our simulations clearly demonstrated
that integrating SI significantly enhances collision selectivity in both LGMD1
and LGMD2 neural models. In practical tests within an experimental arena,
the micro-robot exhibited reduced sensitivity to translating movements while
maintaining robust and reliable collision detection capabilities.

2 Methods

In this section, the proposed visual neural model will be presented in detail with
emphasis laid on how the proposed SI mechanism is incorporated. Specifically,
we elaborated on how the SI and LI are coordinated in LGMD1 and LGMD2
models, respectively, as illustrated in Fig. 1. The full description of network pro-
cessing except the proposed SI algorithm can be found in [9,10]. We present the
mathematical equations in discrete forms, which can be programmed directly
into robotic systems.

2.1 The Proposed SI Model in LGMD1-Based Neural Network

The first layer of LGMD1 neural network consists of photoreceptors (P) arranged
in a matrix, which capture the luminance of each pixel in an image. The
luminance change between successive frames of the image stream is computed
and forms the output of this layer [9,10]. Let L(z,y,t) € R? represent the
pixel values of the input image, where x, y, and t denote spatial and tempo-
ral locations, respectively. The output of this layer is defined as P(xz,y,t) =
|L(z,y,t) — L(x,y,t — 1)|. The output of the P layer forms the input for three
separate cell types in the next layer. One type is called excitation cells, com-
puted as E(x,y,t) = P(z,y,t). LI cells, which mimic the functionality of lateral
inhibitions, affect their neighboring cells with a certain latency. In the LGMD1
model, the computation of LI is defined as follows:

~ ~

E(x,y,t) = a1 E(x,y,t) + (1 — 1) E(x,y,t — 1), ay = At/(At + 7E) (1)

1 1
Li(z,y,t)= Y > E@+iy+jt) - We(i+1,j+1) (2)

i=—1j=—1
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Fig. 1. Schematic of the LGMD1 and LGMD?2 neural networks with the proposed SI
mechanism. (a) Photoreceptor (P) captures luminance change of the pixels in the field
of view, and then transmits the processed information to the partial neural network
(PNN) for processing. LGMD1 cell integrates the local excitations processed in the
PNN. (b) Visual information is split into ON/OFF parallel pathways with bias in the
OFF pathway to realize the specific selectivity of LGMD2. LGMD?2 cell integrates the
local excitation processed in PNN. The proposed SI mechanism is incorporated into
both neural networks through computation in LVF. E: excitation. LI: lateral inhibition.
S: summation. LVF: local visual field. SI: self-inhibition. TD: time delay unit. FFI (or
PM): feed-forward inhibition (or photoreceptor mediation). G: grouping.

Wrr(i,j) denotes the local convolution matrix that is identical to the original
LGMD1 model in [10], which decides the influence by neighboring cells. ¢t and
At are two time constants, where ¢t represents the excitation delay, and At is
the time interval between image frames.

As shown in Fig. 2, SI constitutes the third type of signal formed by the
output of P cells. These inputs are based on the average luminance variation
received from the LVF each subtending a certain image size. After a shorter
latency than LI, the SI can be calculated through the following equations.

Ig(x y,t) = ong(:zr t) (1- ag)ﬁ(z, y,t — 1), ag = At/(At + 7p) (3)

LVE(r,c,t) Z Z (3r +1i,3c+4,1))/9 (4)

i=—275=—2

{zz__lzj__l P(a+i,y+ ;1) - Wt (i, ),if LVF(r,c,t) < 7,

SI(z,y,t) =
(z,9,1) Zz__lzj__l ( +i,y+4,t) - Wsr(i,7), otherwise

()
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Fig. 2. The proposed SI mechanism operates by leveraging spatially distributed local
visual fields (LVFs), with the strength of SI computed through spatial convolution
across these fields. Each LVF comprises nine local SI units, where the activation level
of each unit is determined by the average neuronal activity within its respective LVF.

7p represents the photoreceptor delay, while LVF (r,c,t) denotes the average lumi-

nance variation at the position (r,c)= [@—‘ ~1 denotes a small real number

as a threshold gate, and (3; is a suppressive coefficient. W represents the con-
volution kernel that satisfies

Wsr = (6)

RN T

00| =4 | 00| =
00| =4 | 00| =

Subsequently, as shown in Fig. 1, the LI, SI, and E are summed together in
S layer as

S(‘Ta:%t) = E('T7y7t) - 01 : SI(T/»ZJJ) - 92 : LI(Ivyat) (7)

01 and 65 are the coefficients with ST and LI, respectively. Finally, LGMD1 unit
integrates remaining excitation to form the membrane potential, normalized into

[0.5, 1) as

2.2 The Proposed SI Model in LGMD2-Based Neural Network

We move on introducing how the proposed SI mechanism is integrated into
the LGMD2 neural network model. The main difference between LGMD1 and
LGMD?2 is the signal bifurcation of photoreceptors into ON/OFF channels
through operations of half-wave rectification. The entire process can be defined as
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Table 1. Parameters of the proposed method

Parameter|Description Value

TE latency with LI-flow 6 ~ 10 (ms)

TP latency with SI-flow 3 ~ 5 (ms)

B1, B2 local biases in SI piecewise functions|0.01 ~ 0.5

1 activation threshold of LVF 0.005 ~ 3

01,03,04 |coefficients with SI calculating S 2~5

M, N row, column of input image streams |adaptable

P(Iayvt):L(xvyat)iL(z7yvt71) (9)
_ +

Pon(xvzht) - [P($7y,t)] +a4P0n(x7y7t_ 1) (10)

Poff(xaya t) = —[P(l‘,y,t)]_ + 044P0ff(1‘,y,t - 1) (11)

[#]T and [z]~ denote max(0,z) and min(z,0), respectively.

The subsequent E, I, and S layers are accordingly divided into ON/OFF
channels considering visual contrast change as shown in Fig. 1. The whole process
can be referred in the comparative model [9], which is omitted. The emphasis
herein is laid on incorporating the proposed SI mechanism to be coordinated
with LI. Considering visual contrast separated by ON/OFF channels, the LVF
is incorporated in each pathway. Taking the neural computation of ON channels
as examples, the SI is computed through

Pon(z,y,t) = aonPon( ) 4+ (1= o) Pon (z,y,t — 1) (12)
0
LV Fop (7, ¢, 1) Z > Pon(3r+i,3c+ 4, 1)) /9 (13)
i=—275=-2

SI (33 y t) _ 23:71 Z;:fl ﬁo’ﬂ(m + ivy +]a t) : WO"(7’7j)7if LVFOTL(T7 ¢, t) < 71,
o B2 3ty Y io_y Ponl@ + i,y + j,t) - Woun(i, j), otherwise

(14)

] (15)

The computations of SI in OFF channels conforms to those in ON channels.
The inhibitory bias in put forth in ON channels to suppress ON-contrast to
achieve the LGMDZ2’s specific selectivity to OFF-contrast motions. Thus, the
convolution matrix in OFF channels is halved by W,

After generating local ON/OFF excitation and inhibition, there are
ON/OFF-S units in both channels, that is,

S,m(x,y,t) = [Eon(xayvt) - 03 * Sjon(l',y,t) - wl(t) * LIOn(xvyat)]+ (16)

Sorp(m,y,t) = [Eopp(m,y,t)) — s % SLopp(z,y,t) — wa(t) * Llyss(z,y, 1))
(17)

IS

3
—
W ==

>
N[ = N[
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Fig. 3. Results of comparative models challenged by a dark ball approaching and trans-
lating within a bright background in a real physical scene. (a) Looming stimulus shows
the increase of image size (dark pixels) during approaching over time. (b) Outputs of
LGMD1 and SLGMD1 (LGMD1 with SI mechanism), LGMD2 and SLGMD2 (LGMD2
with ST mechanism) in response to the looming stimulus. (c) Translating stimulus shows
the change of ball position over time and the image size (dark pixels) retains almost
consistent. (d) Response to the translating stimulus. The horizontal dashed line indi-
cates a predefined spiking threshold to compare with membrane potentials.

03 and 04 are coefficients in the ON and OFF pathways, respectively. w1 (t) and
wa(t) are time-varying coefficients calculated by the adaptive inhibition mech-
anism presented in [9]. The remaining neural computation in LGMD2 network
also conforms to [9].

The parameter configurations employed in this study are summarized in
Table 1, while remaining parameters are consistent with those from the origi-
nal LGMD1 and LGMD2 models [9,10]. All parameter values were selected to
optimize the functional performance of the proposed biologically plausible mech-
anisms, particularly to emulate the SI characteristics. Notably, the convolution
matrices differ between LI and SI. Specifically, the center element is set to zero
for LI, reflecting a spatially distributed inhibition signal, whereas it is non-zero
for SI, enabling direct local suppression of neuronal excitation.

Currently, due to the relatively small parameter set involved, there is no
established learning approach for parameter selection. In offline experiments,
input resolution of 480 x 720 pixels was used. In online robotic experiments,
the mounted camera captures images at a resolution of 99 x 72 pixels, with the
sampling frequency regulated at around 30 Hz.
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Fig. 4. Results of comparative models challenged by natural motion stimuli. (a) Trans-
lating stimulus of a pedestrian passing by against dynamic natural background. (b)
Translating stimulus of a ground of people passing by. (c¢) Translating stimulus recorded
by an aerial robot shifting with the image size (dark pixels) changing over time.
(d),(e),(f) Outputs of LGMD1 and SLGMD1 (LGMD1 with SI mechanism), LGMD2
and SLGMD2 (LGMD2 with SI mechanism) in response to each translating stimulus.

3 Experimental Results and Analysis

Within this section, our experiments will be described to illustrate how the
coordination of ST and LI work to suppress translating motion in order to enhance
the selectivity in neural networks for collision detection. All the experiments can
be divided into two categories of offline and online tests. In the former category,
the input stimuli are divided into two types, one is a rolling ball movement
in a simple context and another is outdoor shooting scene. We compared the
response and selectivity of the model with the original LGMD1 [10] and LGMD2
[9] models without the proposed method.

3.1 Method Evaluations

Firstly, the stimulus consists primarily of various motion patterns of a rolling ball
recorded in indoor laboratory settings. Compared to previous synthetic stimuli,
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Fig. 5. Illustration of the experimental arena and the Colias micro-robot [16].

this setup introduces more background noise, and the rolling ball’s speed is
not constant. In these tests, the proposed method was evaluated using a darker
object moving in depth against a bright background, incorporating both looming
and translating movements. As shown in Fig.3, the LGMD with SI (SLGMD)
models effectively suppressed translating motion while maintaining a selective
response to approaching objects. Furthermore, the responses of SLGMD models
were noticeably smoother than those of the original models, suggesting that the
incorporation of ST could help reduce real-world noise (see Figs. 3b and 3d).

Secondly, under outdoor translating stimulation, the comparative models
were tested using real-world visual stimuli recorded by camera. Compared to
the structured indoor scenes, the outdoor environment introduced more complex
and dynamic backgrounds, making it more challenging for the model to recog-
nize object motion patterns. As shown in Fig.4, both SLGMD1 and SLGMD2
models demonstrated a notable suppression of translating motions in these com-
plex settings compared to the original models. Additionally, Fig. 4 reveals that
the SLGMD2 model exhibited the best performance upon depressing translating
motions.

3.2 Robot Online Tests

This part presents the performance of the proposed biomimetic visual system as
embedded vision in Colias micro-robot [16]. The experiments were structured
sequentially with two primary objectives. Initially, the focus was on evaluat-
ing the effectiveness of the combined SI and LI mechanisms in robotic systems
for suppressing translational motion (i.e., open-loop tests). Subsequently, the
emphasis shifted toward assessing the robustness of fundamental collision detec-
tion during autonomous robot navigation (i.e., closed-loop tests). Consequently,
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Fig. 6. Statistical results of robot challenged through repeated open-loop translating
stimuli. (a) The experimental setup involves a robot translating at a specific distance
from the stimulated robot where the models are implemented. (b) Responses of com-
parative models including mean and variance of membrane potentials. The horizontal
dashed line indicates a predefined spiking threshold for collision detection.

a direct comparison of collision detection success rates with the original models
was not performed in this paper. The experimental settings of robot tests and
arena are collectively illustrated in Fig. 5.

Under open-loop tests, we employed a translating robot motion to test both
the proposed method and the original models. During these open-loop tests,
the motion unit of the stimulated robot was deactivated, and its responses
to the visual stimuli were collected and visualized (as shown in Fig.6). These
experiments aimed to verify whether the coordination of SI and LI effectively
suppresses translating motion patterns, thereby enhancing selectivity of such
biomimetic system for looming objects.

Figure 6 presents the statistical outputs of each model under repeated trans-
lating motion patterns. Both LGMD1 and LGMD?2 original models exhibited
strong responses to translational movements. While LGMD1 responded more
strongly than LGMD2, both models frequently misidentified translational stimuli
as potential collisions, resulting in false alarms (membrane potential exceeding
the spiking threshold). In contrast, the SI-LI models (SLGMD1 and SLGMD?2)
effectively suppressed responses to translational movements by dynamically
adjusting inhibition intensity within the LVF, aligning with results of previous
offline evaluations.

In arena tests, we conducted autonomous navigation with the results illus-
trated in Fig.7. The robot configuration aligned with the comparative study
[9]. The results highlighted the efficacy of coordinating SI and LI in robotic
embedded vision for real-time collision detection and avoidance in dynamic envi-
ronments encompassed by grating-patterned stimulation. Previous experiments
demonstrated that the proposed method significantly depresses translating stim-
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Fig. 7. Robot arena tests results of investigating collision detection capabilities: (a) The
LGMD1 model with the proposed SI mechanism is integrated into the embedded visual
module of Colias. The trajectories of robot over a 5-minute navigation are recorded
and depicted. The robot runs autonomously at around 4 cm/s, and turns randomly
to left or right when detecting potential collision. The arena walls display sine-grating
shifting pattern. (b) The case of LGMD2 model with the proposed SI mechanism under
same settings.

uli. In the arena tests, the robot maintained strong collision selectivity, navigat-
ing autonomously without human intervention and avoiding collisions within the
arena for an extended period. These findings also confirmed that the modeling of
SI can be generalized to neural network-based robotic vision systems for collision
perception.

4 Discussions

The systematic experiments conducted in this study demonstrated that the pro-
posed biomimetic visual neural model works effectively to suppress translating
motion by coordinating SI and LI mechanisms, thereby enhancing the selectiv-
ity of LGMD models for looming objects. Robot online experiments verified the
effectiveness of SI mechanism integrated into embedded vision to reduce respon-
sive action of robot to translating stimuli while maintaining the robustness in
collision detection during autonomous navigation. Additionally, the experimen-
tal results confirmed the generalization ability of the proposed SI algorithm
in neural networks for collision perception, as it worked effectively for either
LGMD1/LGMD2 models.

This modeling research also presents several interesting findings. First, Rind,
et al. identified key differences between SI and LI: (1) SI takes effect earlier than
LI, and (2) ST is most effective when changes over visual field are minimal, while
LI dominates when luminance varies significantly [6]. To implement these fea-
tures, this study incorporates different delay parameters associated with SI/LI,
and utilizes down-sampled LVF to indicate local image size over time. Second,
Rind’s research on SI-LI interaction found that while SI alone does not suppress
responses to looming, the coexistence of SI and LI enhances inhibition of looming
responses and effectively suppresses translating motion, maintaining selectivity
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for looming objects [6]. This phenomenon was reproduced in the biomimetic
system demonstrated by our Colias robot, which validated the biological rele-
vance of the proposed method. At last, tests under realistic stimulus conditions
showed that the incorporation of SI resulted in smoother response outputs com-
pared to the original model, suggesting a potential noise reduction capability of
the proposed method.

Acknowledgment. This research was supported by the National Natural Science
Foundation of China under Grant No. 62376063.Qinbing Fu and Jiajun Huang share
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